
The Open University

The Department of Mathematics and Computer Science

advanced project in computer science

Using Word Embedding method to improve information

retrieval engines

Presenter: Avigail Bronznick

Supervisor: Prof. Ehud Goodes

October 2021

A proposal for this advanced project was submitted as part of the requirements for obtaining

a "M.Sc. degree in Computer Science" at the Open University

Table of contents

Overview 3
Word Embedding 3

Word2Vec Embedding 4
Words of a Feather 7

The purpose of the project 8

System design 8

Implementation 13
Data indexing 13
Information retrieval capabilities 16

Search Evaluation 25
Building the iteration 26
Tagging the iteration 27
Evaluation results 28

Development environment and tools 33

Sources of information 35

References 36

2

Overview

Current information retrieval (IR) approaches do not formally capture the explicit

meaning of a keyword query but provide a comfortable way for the user to specify

information needs on the basis of keywords. Currently, most web search engines are

however based on purely statistical techniques. While they are not able to figure out the

meaning of a query, they can provide answers by returning the statistically most

appropriate answer to a user’s query—based on some measures for computing

similarity in vector space.

There are different sets of challenges when building an enterprise service, than internet

search engines such as Google. The amount of content in the organizations is much

smaller, so it’s easier to index and operate on them, but they are also more narrow in

the range making finer distinctions more important. As we mentioned before, keyword

search does a reasonable job, but it requires that the user query words will exist in the

corpus documents. Keyword search has no understanding of what the users are

searching for (it can only match words). The search results can be greatly improved if the

search engine will understand the user's queries intent and can use the context of terms

within a document. This approach is called ‘semantic search’ and can give more relevant

results since semantic search is based on the meanings of words rather than just the

words themselves.

Word Embedding

Word embeddings are mathematical structures that represent a collection of words. This

structure captures the context of a word or phrase plus its semantic and syntactic

relation to other words. Each word is represented as a vector, so that a computer can do

calculations with it. A vector is a mathematical object that has both magnitude and

direction. Not only the word is represented as a vector but All the words across a big

collection of documents are also represented as vectors, and they all exist within a

vector space. The length (magnitude) and direction of the vector represent a particular

word. Words that have similar meanings have similar vector representations and

therefore end up close to each other in the vector space.

3

Word2Vec Embedding

Mikolov et al. introduced word2vec - a novel word-embedding procedure that learns a

vector representation for each word using a (shallow) neural network language model.

Specifically, they propose a neural network architecture (the skip-gram model) that

consists of an input layer, a projection layer, and an output layer to predict nearby

words. Each word vector is trained to maximize the log probability of neighboring words

in a corpus, i.e., given a sequence of words 𝑤
1
, ... , 𝑤

𝑡

1
𝑇

𝑡−1

𝑇

∑
𝑗 ∈ 𝑛𝑏(𝑡)

𝑇

∑ 𝑙𝑜𝑔 𝑝(𝑤
𝑗
| 𝑤

𝑡
)

where nb(t) is the set of neighboring words of word wt and is the hierarchical 𝑝(𝑤
𝑖
| 𝑤

𝑡
)

softmax1 of the associated word vectors and . [4]𝑣
𝑤𝑗

𝑣
𝑤𝑡

Instead of using surrounding words to predict the center word, as with CBow Word2Vec,

Skip-gram Word2Vec uses the central word to predict the surrounding words. The

skip-gram objective function sums the log probabilities of the surrounding words to𝑛
the left and right of the target word 𝑤𝑡

1 The softmax func turns a vector of K real values into a vector of K real values that sum to 1. The input values can
be positive, negative, zero, or greater than one, but the softmax transforms them into values between 0 and 1, so
that they can be interpreted as probabilities. If one of the inputs is small or negative, the softmax turns it into a
small probability, and if an input is large, then it turns it into a large probability, but it will always remain between 0
and 1

4

Due to its surprisingly simple architecture and the use of the hierarchical softmax, the

skip-gram model can be trained on a single machine on billions of words per hour using

a conventional desktop computer. The ability to train on very large data sets allows the

model to learn complex word relationships such as: vec(Japan) - vec(sushi) +

vec(Germany) ≈ vec(bratwurst) and vec(Einstein) -vec(scientist) + vec(Picasso) ≈
vec(painter). Mikolov et al. showed that proportional analogies (a is to b as c is to d) can

be solved by finding the vector closest to the hypothetical vector calculated as c - a + b.

Word2vec input is a text corpus and its output is a set of vectors: feature vectors that

represent words in that corpus - a vocabulary in which each item has a vector attached

to it, which can be fed into a deep-learning net or simply queried to detect relationships

between words.

For example - the word king vector is a list of 50 numbers:

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813
, 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 ,
0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 ,
-0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 ,
-0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 ,
0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 ,
-1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 ,
-0.51042]

to visual it:

Where the color encodes the cells according to their values (red if they are close to 2,

white if they are close to 0, blue if they are close to -2)

A good representation of a word via embedding is by capturing the semantic feature of
the word beyond the text that represents the word, another feature that indicates about
the quality of the embedding is the ability of capturing the relationships between pairs
of words, hierarchies and analogies such as finding male to female ratio

5

“King” against other words

We can see that the words “Man” and “Woman” are much more similar to each other
than either of them is to “king”.

We can see the proportional analogies (a is to b as c is to d) in this example by finding
the vector closest to the hypothetical vector calculated as c - a + b.

In the above example the vectors having a dimension of 50, today it is customary to
represent the vectors in a dimension of 100 to 3K.

6

Words of a Feather

Algorithms, in general, do not understand text, they aren't familiar with human language

and therefore the first pragmatic step for using ML on text is to represent the text as

numbers. The vector space is key to how semantic search works. Word embeddings can

have dozens or hundreds of dimensions. It is not something we can visualize or even

imagine easily, but machines can use multi-dimensional spaces to calculate things like

word similarity. The vector representation is learned by considering all of the words

across all of the documents to understand the context each word appears in. There are

different approaches for projecting words into a vector space, but they all rely on the

fact that in natural language, words with similar meanings tend to appear in similar

contexts.

7

The purpose of the project

Often, for less common queries, we get a limited number of results by using classic

methods of retrieving information, even if there are documents that can satisfy the

query - but because there is no literal equality between the user query keywords and

the document words. (Those documents will not be returned)

In order to increase the recall set (potential documents for return), and to provide the

most relevant documents to the user as the first results position, we will create a textual

search engine that incorporates the technique of Word Embedding.

In this project we will compare the text retrieval mechanism versus the semantic

retrieval mechanism (word embedding as a method), and focus on improving the

relevance of search results by using Word embedding techniques. We will also analyze

the search response times as a result of using these methods.

System design

We will develop a search engine that includes information retrieval capabilities in textual

relevance or by using a Word Embedding technique.

The system includes two main phases:

1. Data indexing

Figure 2: Indexer architecture

8

I chose to use Elasticsearch as a search engine which enables information retrieval

capabilities according to both methods.

The way to achieve a particular method using elastic is in the way that the data is kept

within the index and the specific type of the field (will be expanded at the

implementation part)

The indexing phase of the system included - that for each document that was collected

from Stackoverflow database in a text form, the “indexer” extracted the title of the

document and send it to the “Universal Sentence Encoder” [3] model, in order to

generate a numerical vector using the universal sentence encoder model. The model is

trained and optimized for greater-than-word length text, such as sentences, phrases or

short paragraphs. It is trained on a variety of data sources and a variety of tasks with the

aim of dynamically accommodating a wide variety of natural language understanding

tasks. The input is variable length English text and the output is a 512 dimensional

vector.

After obtaining the vector from the model, the "indexer" enriched the input document

(that collected from stackoverflow) with a new field named “titel_vector” and pushed

the document into elasticsearch (so that each document contains a title as text, and a

title represented as a 512 dimensions vector)

9

2. Information retrieval capabilities

Figure 3: Searching architecture with word embedding technique

The flow of searching via word embedding technique includes:

1. Receiving a text query from the user

2. Converting the query representation from text to vector

3. Requesting the elasticsearch database, by performing cosine similarity between

the user query vector (from phase 2) to the titles vectors documents stored in the

elastic

4. Returning the relevant documents (in their textual representation) to the user

10

Figure 4: Searching architecture with textual retrieval technique

The flow of searching via textual technique includes:

5. Receiving a text query from the user

6. Requesting the elasticsearch database by performing a “match” query (based on

the tf/ idf method)

7. Returning the relevant documents to the user

11

The project contains the following parts:

1. Collecting documents on which the information will be retrieved on

2. Creating a database which will contain the data (from step 1) and allow the

desired functionality of information retrieval:

a. Textual retrieval

b. Semantic search (using word embedding method) retrieval

3. Indexing the data (from step 1) and inserting it to the database (from step 2) to

allow information retrieval

4. Implementation of a search engine - that allows searching documents in the two

different methods

5. creating an iteration that includes search retrieval results by the two difference

methods, and manually tag the results

6. Calculating the relevance score of the iteration

12

Implementation

Data indexing

First I installed the elasticsearch database (version 7.13.2) [1] locally on my computer.

Afterwards I created a large collection of questions documents (taken from the open

database of StackoverFlow via kaggle [2]), were each document contains the fields:

1. Question title (text field)

2. Question body (text field)

3. Question vector title (vector of 512 dimensions - of real numbers)

I created an index in elastic with the mapping:

Figure 5: elastic index mapping

13

Configuration due to the fact that elastic is a distributed system:

● “number_of_shardes” - the numbers of nodes elastic database has

● “number_of_replicas” - the number of extra copies each documents has (2

copies overall)

Index mapping:

● The “Title” field type is text, which means the elastic analyzed this field for

full-text search

● The “title_vector” field type is dense_vector (with 512 dimension), which means

that this field support vector functions and vector access methods

The rest of the fields are part of the document in StackOverflow so they are indexed as

well, we will use some of them to understand the meaning of the title when needed

(e.g. using the "body" field)

Before indexing the question documents into the elastic index, I download the

“Universal Sentence Encoder” [3] from “tenserFlow” and for each document I sent the

question title to the model, in order to generate a numerical vector using the universal

sentence encoder model (as mentioned before)

Indexing flow:

1. Receiving a question document from StackOverFlow

a. output JSON doc - for example
{"user":"4481","tags":[".net","dependency-injection","inve
rsion-of-control","castle-windsor","ioc-container"],"quest
ionId":"148908","creationDate":"2008-09-29T14:28:52.800","
title":"Which Dependency Injection Tool Should I
Use?","acceptedAnswerId":"151921","type":"question","body"
:"I am thinking about using Microsoft Unity for my
Dependency Injection tool in our User Interface. Our
Middle Tier already uses Castle Windsor, but I am thinking
I should stick with Microsoft. Does anyone have any
thoughts about what the best Dependency Injection tool is?
Autofac Castle MicroKernel/Windsor PicoContainer.NET
Puzzle.NFactory Spring.NET StructureMap Ninject Unity
Simple Injector NauckIT.MicroKernel WINTER4NET
ObjectBuilder "}

14

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html

2. Sending the title text to the sentence embedding model

a. Input - text

b. Output - embedding vector of 512 dimension - for example
[0.06592217087745667, 0.017203116789460182 ...

-0.03768639266490936, , 0.053689248859882355]

(What is shown here are the first and last two dimensions due to space limit)

3. Creating a JSON document, including the fields from step 1 + the “title_vector”

from step 2 - and indexing the document to elastic field

For example - selecting the document from step 1

Figure 6: elastic query - select document by id

The output (the “title_vector” field is collapsed due to space limit)

Figure 7: elastic document output

15

Information retrieval capabilities

After indexing all the question documents, the elastic index contained 18, 848

documents

http://localhost:9200/posts/_count

Figure 8: elastic query count result

I Created two methods for retrieval the information based on a user query

1. “embeding_search” [GitHub link]

2. “textual_search” [GitHub link]

Searching via word embedding technique flow (figure 3)

1. User enters a search query into the “searcher” system (via a console window)

2. The “searcher” sends the user search query from (step 1) to the sentence

embedding model and received an embedding vector with 512 dimension

3. The searcher created a SQL for elastic, using the vector value from step 2 and

inserting the vector from step 2 into the “user_query_vector” placeholder in the

below query (figure 9)

4. The user gets the first x results (describe below)

16

http://localhost:9200/posts/_count
https://github.com/Avigailbr/text-embeddings/blob/e6012a0903e9c8c089bc1d7a370add1c27ec3ab6/src/elastic.py#L103
https://github.com/Avigailbr/text-embeddings/blob/e6012a0903e9c8c089bc1d7a370add1c27ec3ab6/src/elastic.py#L128

Figure 9: a template of an elastic query for performing cosine Similarity

17

Elastic query explanation:

● "_source" - for each retrieval documents, only the fields that inside the “includes”

array will return

● “track_total_hits” - generally the total hit count can’t be computed accurately

without visiting all matches, which is costly for queries that match lots of

documents. The track_total_hits parameter allows control of how the total

number of hits should be tracked, Because it is set to true, the search response

will always track the number of matches that match the query exactly

● “min_score” - exclude documents which have a “_score” (elastic relevant score)

less than the minimum specified in min_score (in our project min score is define

to 1.5)

● Query - ranking the questions documents based on their similarity to the user’s

query, using cosine Similarity function [4] elastic provides

The “script_score” query is designed to wrap a restrictive query, and modify the scores

of the documents it returns. However, we’ve provided a “match_all” query, which

means the script will be run over all documents in the index. This is a current limitation

of vector similarity in elasticsearch, therefore I added the “min_score” parameter to

provide some relevance threshold.

For example:

Enter:

1) for querying the collection through word-embedding

similarity match

2) for querying the collection through textual match

3) for creating the evaluation data

4) to exist: 1

Enter query: zipping up files

3190 total hits.

embedding time: 60.39 ms

search time: 479.87 ms

id: v8CTZnoBTAJax3ao-loH, score: 1.7865233

{'title': 'Compressing / Decompressing Folders & Files', 'body': 'Does

anyone know of a good way to compress or decompress files and folders in C#

quickly? Handling large files might be necessary. '}

id: osCUZnoBTAJax3aohKPK, score: 1.773902

18

{'title': 'Partial .csproj Files', 'body': 'Is it possible to split the

information in a .csproj across more than one file? A bit like a project

version of the partial class feature. '}

id: EcCUZnoBTAJax3aogqLz, score: 1.7686331

{'title': 'How to avoid .pyc files?', 'body': 'Can I run the python

interpreter without generating the compiled .pyc files? '}

id: I8CUZnoBTAJax3aoLHME, score: 1.7433983

{'title': 'Files on Windows and Contiguous Sectors', 'body': "Is there a

way to guarantee that a file on Windows (using the NTFS file system) will

use contiguous sectors on the hard disk? In other words, the first chunk of

the file will be stored in a certain sector, the second chunk of the file

will be stored in the next sector, and so on. I should add that I want to

be able to create this file programmatically, so I'd rather not just ask

the user to defrag their harddrive after creating this file. If there is a

way to programmatically defrag just the file that I create, then that would

be OK too. "}

Explaining the example

1. User choose option 1 (searching with word-embedding capabilities)

2. Entered a search query - “zipping up files”

3. The searcher returned to the user 4 documents that are closest to the query he

was looking for

4. The response from the searcher is:

a. Total hits (number of documents where there simulitarty score is higher

than 1.5)

b. Embedding time in ms - converting the user query to a word embedding

vector

c. Search time - performing cosine similarity between the user query vector

to the documents in the corpus

Metrics for the above example search query:

3190 total hits.

embedding time: 60.39 ms

search time: 479.87 ms

19

d. for each document the searcher return

i. the document elastic id and the score (elastic inner fields)

ii. The json document (the fields that are mentioned inside the

“includes” section)

E.g. - first documents data:

id: v8CTZnoBTAJax3ao-loH, score: 1.7865233

{'title': 'Compressing / Decompressing Folders & Files', 'body': 'Does anyone

know of a good way to compress or decompress files and folders in C#

quickly? Handling large files might be necessary. '}

We can see from the above example that the first result is amazing in terms of

information retrieval, but the rest of the results are on the verge of being irrelevant - we

will expand on the above after cutting off the evolution phase.

20

Searching via textual technique flow (figure 4)

1. User enters a search query int the “searcher” system (via Console window)

2. The searcher created a SQL for elastic using the input value from step 1 and

inserting it into the “user_query” placeholder in the below query (figure 10)

3. The user gets the first x results (describe below)

Figure 10: a template of an elastic query for performing textual search

21

● “match” - The match query is the standard query for performing a full-text

search, including options for fuzzy matching.

For example:

Enter:

1) for querying the collection through word-embedding

similarity match

2) for querying the collection through textual match

3) for creating the evaluation data

4) to exist: 2

Enter query: zipping up files

531 total hits.

search time: 196.05 ms

id: LcCUZnoBTAJax3aoVoU_, score: 9.472768

{'title': 'CruiseControl + Starteam: not picking up all files', 'body':

"Our CruiseControl system checks out from starteam. I've noticed that it is

sometimes not checking out new versions of files, only added files. Does

anyone know why this is? "}

id: hMCUZnoBTAJax3aoQnrH, score: 6.5083327

{'title': 'Packaging up Tomcat', 'body': "In my job we have to deploy an

application on various environments. It's a standard WAR file which needs a

bit of configuration, deployed on Tomcat 6. Is there any way of creating a

'deployment package' with Tomcat so that you just extract it and it sets up

Tomcat as well as your application? I'm not sure that creating a .zip file

with the Tomcat folder would work! It certainly wouldn't install the

service. Suggestions welcome! I should note that - at the moment - all apps

are deployed on Windows servers. Thanks, Phill "}

id: lcCUZnoBTAJax3aoDGKH, score: 6.2230253

{'title': 'Cleaning up RTF text', 'body': "I'd like to take some RTF input

and clean it to remove all RTF formatting except \\ul \\b \\i to paste it

into Word with minor format information. The command used to paste into

Word will be something like:

oWord.ActiveDocument.ActiveWindow.Selection.PasteAndFormat(0) (with some

RTF text already in the Clipboard)

{\\rtf1\\ansi\\deff0{\\fonttbl{\\f0\\fnil\\fcharset0 Courier New;}}

{\\colortbl ;\\red255\\green255\\blue140;}

\\viewkind4\\uc1\\pard\\highlight1\\lang3084\\f0\\fs18 The company is a

22

global leader in responsible tourism and was \\ul the first major hotel

chain in North America\\ulnone to embrace environmental stewardship within

its daily operations\\highlight0\\par Do you have any idea on how I can

clean up the RTF safely with some regular expressions or something? I am

using VB.NET to do the processing but any .NET language sample will do. "}

id: CMCUZnoBTAJax3aoIW9Y, score: 6.2230253

{'title': 'Setting Up MySQL Triggers', 'body': "I've been hearing about

triggers, and I have a few questions. What are triggers? How do I set them

up? Are there any precautions, aside from typical SQL stuff, that should be

taken? "}

Explaining the example

1. User choose option 2

2. Entered a search query - “zipping up files”

3. The searcher returned to the user 4 documents that are closest to the query he

was looking for

4. The response from the searcher is:

a. Total hits (number of documents where there text match to the query)

b. Search time - performing textual matching between the user query to the

documents

Metrics for the above example search query:

531 total hits.

search time: 196.05 ms

c. for each document the searcher return

i. the document elastic id and the score (elastic inner fields)

ii. The json document (the fields that are mentioned inside the

“includes” section)

E.g - First documents data:

id: LcCUZnoBTAJax3aoVoU_, score: 9.472768

{'title': 'CruiseControl + Starteam: not picking up all files', 'body': "Our

CruiseControl system checks out from starteam. I've noticed that it is

sometimes not checking out new versions of files, only added files. Does

anyone know why this is? "}

23

Example comparison between the two methods:

● Embedding search took much more time than the standard textual matching

○ 480 ms versus 200 ms

● Total hits number is higher at the first method (embedding) than the second

method due to the limitation of the vector comparison capabilities in elastic, and

the manual threshold addition made by me (a more accurate accuracy of the

threshold is needed in a production system)

● The results in both methods are not amazing, probably due to the limited

database we have (runs locally, with a small amount of documents), but, we can

see the potential of the first method - which retrieved a document based on an

understanding of the query and not just based on the visibility of the words

themselves

24

Search Evaluation

Search engine evaluation is in a very basic sense, all about how well a search engine

serves its users, or, from the other point of view, how satisfied users are with a search

engine.

For any evaluation of search engine performance it is crucial to understand user

behavior. This is true at the experimental design stage, when it is important to formulate

a study object which corresponds to something the users do out there in the real world,

as well as in the evaluation process itself, when one needs to know how to interpret the

gathered data.

Due to the fact that the information about the user queries is not available to me, I

randomly selected ~50 queries from the database itself and used the title question as

the “user search query”.

The random selection was made via:

Figure 11: an elastic query that select randomly 50 docs

25

Note:

The “random_score” generates scores that are uniformly distributed from 0 up to but

not including 1. By default, it uses the internal Lucene doc ids as a source of randomness

Due to the fact that the queries were selected from the database itself - I added a filter

section to the retrieval query of the document id itself from the returned results (so that

the query document itself will not be returned)

Building the iteration

● Creating a csv file:

○ File name: "iteration_<curernt_date>.csv"

○ Headers:

■ Query

■ X embedded title result (x = first/ second/ third/ fourth)

■ X embedded id

■ X Score

■ Embedded total results

■ Embedded request time

■ X textual title result

■ X textual id

■ X score

■ Textual total results

■ Textual request time

○ Notes:

■ In total 29 columns

■ The column scores were created with an empty value - and during

the manual tagging phase the appropriate score was entered

● For each randomly selected query, both search methods were enabled, and the

entries were entered in the appropriate places in the file

○ Notes:

■ The metrics were also inserted into the appropriate columns

■ Some searches returned less than 4 results in total and therefore,

some of the columns were left blank

26

Tagging the iteration

In order to facilitate the tagging process, I added to the csv file (that was created in the

previous step) colors, Which differentiate between the "query" and the returned results,

(there is also a color difference between the results of the two different methods)

A peek at what it looks like:

Figure 12: iteration results snapshot

● The tagging was performed by me

● Each result got the value between 0-2

○ 0 - not relevant

○ 1 - Understandable why the result is back - but not entirely relevant or -

the body of the question had to be read because the title was not enough

(the identifying value of the document was returned in order to enable

advanced comprehension capability)

○ 2 - relevant

27

Evaluation results

Discounted cumulative gain (DCG) [1] is a measure of ranking quality. In information

retrieval, it is often used to measure effectiveness of web search engine algorithms or

related applications. Using a graded relevance scale of documents in a search-engine

result set, DCG measures the usefulness, or gain, of a document based on its position in

the result list. The gain is accumulated from the top of the result list to the bottom, with

the gain of each result discounted at lower ranks.

Two assumptions are made in using DCG and its related measures.

1. Highly relevant documents are more useful when appearing earlier in a search

engine result list (have higher ranks)

2. Highly relevant documents are more useful than marginally relevant documents,

which are in turn more useful than non-relevant documents

We will calculate the DCG of the textual method and the word embedding method of

the evaluation (from above) and we will compare the result.

Calculation:

● Cumulative Gain (CG) is the sum of the graded relevance values of all results in a

search result list:

𝐶𝐺
𝑝

=
𝑖=1

𝑝

∑ 𝑟𝑒𝑙
𝑖

Where is the graded relevance of the result at position𝑟𝑒𝑙
𝑖

𝑖

● Discounted Cumulative Gain (DCG) :

The premise of DCG is that highly relevant documents appearing lower in a search

result list should be penalized as the graded relevance value is reduced

logarithmically proportional to the position of the result

𝐷𝐶𝐺
𝑝

=
𝑖=1

𝑝

∑
𝑟𝑒𝑙

𝑖

𝑙𝑜𝑔
2
(𝑖+1)

● In our evaluation, and is one of the values 0, 1 or 2𝑝 = 4 𝑟𝑒𝑙
𝑖

28

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Relevance_(information_retrieval)

● Auxiliary calculation :

○ Position ,𝑖 = 1 𝑙𝑜𝑔
2
(1 + 1) = 1

○ Position ,𝑖 = 2 𝑙𝑜𝑔
2
(2 + 1) = 1. 58

○ Position ,𝑖 = 3 𝑙𝑜𝑔
2
(3 + 1) = 2

○ Position ,𝑖 = 4 𝑙𝑜𝑔
2
(4 + 1) = 2. 32

For example:

For the query “Which Dependency Injection Tool Should I Use?”

● The relevant score of the embedding iteration

○ returned 4 documents, which were labeled with relevant score of:

𝐷
1

= 1, 𝐷
2

= 2,𝐷
3

= 0,𝐷
4

= 2

○ = 1+2+0+2 = 5𝐶𝐺
𝑝

○ = 1+1.3+0+0.8613531161 = 3.1 (sum DCG)𝐷𝐶𝐺
𝑝

● The relevant score of the textual iteration

○ returned 4 documents, which were labeled with relevant score of: as:

𝐷
1

= 0, 𝐷
2

= 0,𝐷
3

= 0,𝐷
4

= 2

○ = 0+0+0+2 = 2𝐶𝐺
𝑝

○ = 0+0+0+0.8613531161 = ~0.9𝐷𝐶𝐺
𝑝

Ignoring recall issue:

Since not every query result returns the same number of documents, we do not want to

“punish” queries that return less than x documents (in our case 4)

We will calculate the “max relevant” score for each query result set in which we treat

each document as if it had received the maximum relevant score (that is 2)

Calculation:

Max Score for each document with relevant score = 2, per position

29

● Max score, position ,𝑖 = 1 2

𝑙𝑜𝑔
2
(1+1)

= 2

● Max score, position ,𝑖 = 2 2

𝑙𝑜𝑔
2
(2+1)

= 1. 26

● Max score, position ,𝑖 = 3 2

𝑙𝑜𝑔
2
(3+1)

= 1

● Max score, position ,𝑖 = 4 2

𝑙𝑜𝑔
2
(4+1)

= 0. 86

Max Score for each query result (where documents are tagged with relevant score = 2)

MAX DCG score:

● Search query return of 4 documents:

○ = 2 + 1.26 + 1+0.86 = 5.12𝐷𝐶𝐺
𝑝

● Search query return of 3 documents

○ = 2 + 1.26 + 1 = 4.26𝐷𝐶𝐺
𝑝

● Search query return of 2 documents

○ = 2 + 1.26 = 3.26𝐷𝐶𝐺
𝑝

● Search query return of 1 documents

○ = 2𝐷𝐶𝐺
𝑝

Now, we will calculate the “relative query score” by normalizing the DCG.

For each query result, we will divide the DCG Sum value by the MAX DCG score

(depending on the number of results returned to the query)

Back to previous example:

● Embedding mechanism received 4 documents for the query “Which Dependency

Injection Tool Should I Use?”

○ The DCG sum is 3.1 (based on the relevant score of each document)

○ The “ “relative query score” is: 3.1/ 5.12 = 0.605

● Textual mechanism received 4 documents for the query “Which Dependency

Injection Tool Should I Use?”

○ The DCG sum is 0.9 (based on the relevant score of each document)

○ The “ “relative query score” is: 0.9/ 5.12 = 0.1681275363

30

Total Relevant score

𝑖=1

𝑝

∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑒𝑟𝑦 𝑠𝑐𝑜𝑟𝑒

𝑝

Where is the number of queries that participated in the evaluation𝑝

The iteration total relevant score that i tagged is:

● For the Word Embedding mechanism : 24.84%

● For the Textual mechanism : 15.5%

These numbers are very small in relation to the relevance score we expect from a search

engine in general, but we can see very clearly a proof of feasibility, as no research has

been done on the types of users and how the queries they use, the sample of questions

(building the iteration) was taken from the database itself and not from a real data of

users queries. By using a basic income of a word embedding mechanism we improved

the overall search engine relevance score by 60% from the textual relevance score.

Response time metric:

Average response time metric:

● Word embedding technique - 27.762 ms

● Textual matching technique - ~16 ms

Upper 90 percentile response time metric:

● Word embedding technique - 32.853 ms

● Textual matching technique - 19.575 ms

As we can see the response time increases when we search with the word embedding

technique, the reason why is:

1. For each user query , first we are converting it from a text query to a vector

query representation (for calculating the cosine similarity between the user query

and the DB documents)

31

2. Using the “match_all” query in elastic before calculating the documents scores

based on the cosine similarity script function, due to the limitation of Elastic

search (mentioned in the previous section). There are many ways to deal with the

above, which are not part of this work .A light touch on the subject is for

example, creating clusters from the corpus of word embedding document

representation (the clustering of the documents are based on the k nearest

neighbors), and performing the similarity function between the user query to the

corpus only in front of a specific cluster (a selected subset) of course

understanding in front of which cluster subset to calculate the similarity, is a task

in itself

For example, splitting the corpus into 3 subsets, each subsets has a representative

vector (whose calculation is a challenge in itself)

Figure 13: high-level architecture of clustering the corpus

Searching for results based on a user text query:

1. first the query will be converted into a vector representation

2. Then, a match will be made in front of the vectors that representing the

subsets clusters

3. The similarity calculating between the query vector and the corpus, will be

performed in front of the selected subset documents (from step 2)

32

This approach can reduce significantly the irrelevant documents that the word

embedding method using ES returns (as we saw in the example of the “zipping up

files”)

33

Development environment and tools
The system was developed in Python language, in a work environment of MacOS

Catalina (version 10.15.7), Memory 16 GB, 2.8 GHz Quad-Core Intel Core i7.

I installed and ran locally elasticsearch version 7.13.2, and used elastic SQL to perform

the information retrieval of the two main methods of the project. The representation of

the title documents embedding vectors were done using the Universal Sentence Encoder

that is public and available in Tensorflow-hub.

The project was developed on the purity of the open source code.

34

Code architecture
GitHub repository link: https://github.com/Avigailbr/text-embeddings

Main function (main.py) that responsible for:

1. Downloading the pre-trained embeddings from tensorflow hub

2. Creating a model object that enables to use universal-sentence-encoder model

[5]

3. Creating a tensorflow session

4. Creating elasticsearch client object

5. For loops that enables

a. Option 1 - querying the collection through word-embedding similarity

match

b. Option 2 - querying the collection through textual match

c. Option 3- creating the evaluation data (queries was selected via the

random function score mentioned above, and stored inside a

“questions.csv” file inside the repository)

Elastic module (elastic.py) responsible for:

1. Preparing the data and Index it into the elastic database

2. Perform the search tougher a SQL elastic via the database

a. Creating the query

b. Manipulating the response data (metrics and documents) to the user

Embed module (embed.py) responsible for receiving a text title and returning an

embedding that represents the text title via the tensorflow model

Iteration module (iteration.py) responsible for Creating the iteration end-to-end using

elastic and embed modules

35

https://github.com/Avigailbr/text-embeddings

Sources of information

[1] elasticsearch installation -

https://www.elastic.co/downloads/elasticsearch

[2] Kaggle - Stackoverflow Database -
https://www.kaggle.com/muhammedabdulazeem/500k-stackoverflow-questions#

[3] universal-sentence-encoder-models -

https://www.kaggle.com/dimitreoliveira/universalsentenceencodermodels

[4] cosine Similarity function -

https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-script-score-que

ry.html#vector-functions

[5] universal-sentence-encoder model

https://tfhub.dev/google/universal-sentence-encoder/2

36

https://www.elastic.co/downloads/elasticsearch
https://www.kaggle.com/muhammedabdulazeem/500k-stackoverflow-questions#
https://www.kaggle.com/dimitreoliveira/universalsentenceencodermodels
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-script-score-query.html#vector-functions
https://www.elastic.co/guide/en/elasticsearch/reference/7.6/query-dsl-script-score-query.html#vector-functions
https://tfhub.dev/google/universal-sentence-encoder/2

References

[1] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John,

Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian

Strope, Ray Kurzwei, Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, Cornell University, Universal Sentence Encoder

[2] Pavel Siroktin, CoRR abs/ 1302.2318 (February 2013), On Search Engine Evaluation

Metrics

[3] Doug Turnbull, John Berryman, Manning Publications, ISMN: 8781617292774, 2016,

Relevant Search: With applications for Solr and Elasticsearch

[4] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, ICLR (Workshop Poster) 2013,

Efficient Estimation of Word Representations in Vector Space, ar Xiv:1301.3781

37

https://arxiv.org/search/cs?searchtype=author&query=Tar%2C+C

